FOL Contexts — the Data Structures

Richard W. Weyhrauch
Ibuki Inc.

rww@ibuki.com

Carolyn Talcott
Stanford University

clt@sail.stanford.edu

Copyright (© 1996 by R. Weyhrauch and C. Talcott

Prolog

This note describes the FOL context data structure. It is a refer-
ence manual, rather than a primer. We make no attempt to motivate
or justify the choices here.

1. A birds-eye view of FOL Contexts

We start with a set of symbols, FOLsym, a set of labels Lab, as well
as numbers and the ability to form finite lists of things. These are
our basic building blocks. We let s range over FOLsym and lab range
over Lab.! We also assume we have a computation system (see [2])
that provides us with programs and computations.

Forms are the primeval syntactic structures. A form is either
a symbol or a list of forms. We let Form be the set of forms so
generated, and let form range over Form.

An FOL context is a data structure that contains a label, lab, a
language, L, a simulation structure, S, and some facts, F'. Informally
we write,

C={(lab:L,S, F)

to describe such an FOL context. This note describes the data struc-
tures (languages, simulation structures, facts) that are used to build
contexts, and describes the basic operations for constructing and ma-
nipulating FOL contexts. The computation system provides finite data
structures from which we build simulation structures. The purpose

I By convention whenever we introduce a metavariable to range over some sort,
then we also may use subscripted or superscripted variants range over that sort.
Thus lab’ and laby will also range over Lab.

Draft! 20 March 1997

www.manaraa.com

of simulation structures is to tell us how we can compute the value of
expressions in the language of a context.

2. Languages

An FOL language contains a finite set of symbols each with an as-
sociated syntactic type—>SortSym, RelSym, FunSym, IndSym—which
tells us how 1t is used to form terms and formulas. We factor the de-
scription of an FOL language into two parts: a similarity type and
its corresponding symbol declarations. A similarity type specifies the
number of symbols of each syntactic type and the number of argu-
ments (arity) of each relation and function symbol. The symbol dec-
larations specify the actual symbols of the language. In the case of
sorts, the declaration consists of the sort symbol together with a (pos-
sibly empty) list of symbols usable as variables ranging over that sort.

2.1. Similarity Types

A simalarity type is a data structure of the form

T = simtypeMake(j, p,q,n)

where
(s) j = simtypeSorts(T) is a positive integer, the number of sort
symbols;

(r) p= simtypeRels(T) is a list of positive integers, p = (p1,...,pr),
where the length, &k, of p is the number of relation symbols, and
p;i is the arity of the i-th relation symbol;

(f) g = simtypeFuns(T) is a list of positive integers, ¢ = (q1,...,q),
where the length, [, of g is the number of function symbols, and
¢; 1s the arity of the i-th function symbol; and

(i) n = simtypelnds(T) is a natural number, the number of individ-
ual constant symbols.

We let the symbol T range over the sort Simtype of similarity types.
In places where a similarity type is expected, we write

T ={j,p,q,n)

to describe a similarity type with components j, p, ¢, n as above.

www.manaraa.com

2.2. First order languages

An FOL language is a data structure of the form
L = langMake (T, svDecs, syms,., syms s, syms;)

where
(t) T = langSimtype(L) is a similarity type,

(s) svDecs = langSortVarDecs(L), the sort and variable symbol dec-
larations, is a non-empty list of non-empty lists of symbols

svDecs = ({81,011, -+, V1my)5 (85,0510 2 Vjim;)5

where s; is declared a sort symbol and v; ,,,; is declared a variable
symbol ranging over s; for 1 <1 < j.

(r) syms, = langRelDecs(L), the relation symbol declarations, is a
list of symbols syms, = (r1,...,rg) declaring each r; to be a
relation symbol.

(f) syms; = langFunDecs(L), the function symbol declarations, is
a list of symbols syms,; = (f1,..., fi) declaring each f; to be a
relation symbol.

(i) syms; = langIndDecs(L), the individual constant symbol decla-
rations, is a list of symbols syms; = (c1,...,¢,) declaring each ¢;
to be an individual constant symbol.

and the lists of symbols are pairwise disjoint. We let L range over the
sort Lang of FOL languages. We write

L=(T,
<<81,U1,1,---7U1,m1>7---v<Sijj717--'vvjvmj>>v
(ri,...,r5),

(fiooos fi)
(c1,..,¢n))

to describe a language, L, of similarity type T with symbol decla-
rations as above. The sort symbol sy is called the mostgeneral or
universal sort symbol. Note that the above definition requires every
context to have a universal sort. This sort plays a distinguished role
as will be explained in later sections.

By the symbols of L we mean the set
S P R 1O PR o RPN S TP o) TN | I TR o

3

www.manaraa.com

Well-formed terms and formulae of L are subsets of FOL forms defined
in the usual way from the individual variable and constant symbols,
termIf (conditional term formation); the sentential constants, True
and False; the sentential connectives, and (A), or (V), imp (D),
iff (=), not (=), wffIf (conditional formula formation); and the
quantifiers, all (V), and exists (3J) (see Prawitz [1]). We say that
e is an expression of (the language) L, when e is either a term or a
formula of L. A form form is called a formula if it has the shape of
a formula, that is if there is a language L such that form is a (well-
formed) formula of L. We let Formula be the set of formulas, and let
formula range over Formula.

We have chosen to define a language in terms of two lists—a similarity
type and symbol declarations—rather than as a set of symbols and
an associated arity map. Since a similarity type also describes the
structure of a model, independent of the choice of symbols used to
describe terms and formulas, similarity types types provide a link
between the syntactic and semantic structure of FOL contexts. For
the purpose of recognizing the set of well-formed terms and formulas,
it is easy to map one form of language presentation to the other.

3. Computation Systems

In [2] we introduced the notion of a computation system as a certain
kind of partial structure in order to give a clear understanding of what
we mean by “program”. A computation system has as its domain a
set, CsysU, of computational entities (the computational universe).
The basic sorts of a computation system include:

Pgm the set of programs;
Cmp the set of restartable computations;
Env the set of environments

The reification of computations and the notion of a restartable compu-
tation (using a stepper semantics) is described in detail in [2]. Here
we explain just enough to allow us to make sense of the notion of
simulation structure.

A computation system has a relation run and the functions apply,
and call.
run(cmp,)

means that if you start the computation, ¢mp the computation com-
pletes and the result is u. We require that run behave like a function

www.manaraa.com

with respect to its first argument, i.e. there is at most one value «
such that run(cmp,).

apply (P, env, cmps)

produces a restartable computation that computes the result of ap-
plying the program P to the list of arguments resulting from the list
of computations cmps.

call(P, env, args)
is like apply, but expects as its third argument a list of argument

values, not a list of computations producing these values.

In a computation system, we also have available some specific
data structures:

yes and no representing the booleans True and False;
mt-env, the empty environment;

nc-pgm, a program that fails to complete its computation for
any argument list; and

nc-cmp, a restartable computation that is never done.

Note that nc-pgm and nc-cmp are specific data structures and can be
tested against for equality.

4. Simulation Structures

An FOL simulation structure is a data structure of the form
S = ssMake(T, env, reps, satts, ratts, fatts, catts)

where

(t) T = ssSimtype(S) is a similarity type,

(r) reps = ssReps(S) is a list of representation types (FOLsyms),
(e) env = ssEnv(S) is an environment,
(

sa) satts = ssSortAtts(S) is a list, (satty,. .., satt;), of sort attach-
ments, where each sort attachment, satt;, is a (possibly empty)
list of pairs, each consisting of a sort representation type and a
program,

o satt; = <<3repi7x,P5i7m> ‘ 1 <a<ms;)

0 srep; . € reps
1

www.manaraa.com

(ra) ratts = ssRelAtts(S) is a list, (ratty,..., ratty), of relation at-
tachments, where each attachment, ratt;, is a (possibly empty)
list of pairs, each consisting of a relation representation type and
a program,

o ratt; = <<rrepi7x,PRi7m> ‘ 1 <a<mr)
o rrep; , € repst

(fa) fatts = ssFunAtts(S) is a list, (fatt,,..., fatt;), of function at-
tachments, where each attachment, fatt;, is a (possibly empty)
list of pairs, each consisting of a function representation type and
a program,

o fatt; = ({frep; o, Pr;) |1 <2 < mf,)
o frep; , € repsditt

(ia) catts = ssIndAtts(S) is a list, (iattq, ..., datt,), of individual
constant attachments, where each attachment, iatt;, is either the
empty list or a list with one element —an indconst representation
type paired with a computation,

o iatt; = ((irep; ., cmp; ;) |1 <2 <me)
o arep; , € reps, me; is 0 or 1
where a given representation type (sort, relation, function or individ-

ual) appears at most once as the first element of an element of an
attachment list.

We let S range over the sort Ss of FOL simulation structures. We
write

fatty, ..., fatt;),
iatty ..., atty))

to describe a simulation structure, S, of similarity type T, with envi-
ronment, representations, and attachments as above.

Even though representation types may seem to be one of the
more bizarre and complex features of FOL contexts, we do not try to
motivate their use here. As mentioned earlier, the purpose of this
note is to carefully describe the data structures we call FOL contexts.
The motivation for representations will be discussed elsewhere.

www.manaraa.com

5. Assertions and Facts

The facts of an FOL context are collections of assertions that are re-
quired to satisfy certain well-formedness conditions. A assertion is a
data structure of the form

assert = assertMake(lab, formula, deps, just)

where

(1.) lab = assertLab(assert) is a label,

(2.) formula = assertForm(assert) is an FOL formula,

(3.) deps = assertDeps(assert) is a list of labels called dependencies,
(4.) gust = assertJust(assert) is a justification.

Justifications, Just, are data structures used to record additional in-
formation about an assertion. Among other things, a justification
might say why an assertion is asserted in a context, or what it might
be used for and how it might be used in the process of reasoning. We
leave justifications unspecified for the present, simply requiring that
they be finite data structures.

We let assert range over the sort Assert of assertions. We write
assert = (lab, formula, deps, just)

to describe an assertion with components as above.

If the formula of an assertion, assert, is a formula of the language
L, then we say assert is an assertion of L, and write Assert{L}(assert).

We let ListOf [Assert] be the the set of lists of assertions, and let
as range over ListOf [Assert]. assertsLabs(as) is the set of labels of
assertions occurring in as, and assertsCons(assert, as) adds assert to
the list as. assertsGet(as,lab) is the first assertion in the list as with
label lab. We write ListOf [Assert]{L}(as), if as is a list assertions
over L, i.e. if each element of as is a assertion over L.

Assertions may have no dependencies—for example axioms and
tautologies. If the label of an assertion, assert, appears in its depen-
dency list and its label is the only dependency of that assertion, then
we say that assert is an assumption and write Assume?(assert).

www.manaraa.com

6. Contexts
An FOL context is a data structure of the form
C = catMake(lab, L, S, F)

where

(1.) lab = catLab(C) is a label,

(2.) L = catlang(C) is a language,

(3.) S = catSs(C) is a simulation structure,

(4.) F = catFacts(C) is an assertion list over L (ListOf [Assert|[{L}(F)).

We further require that every label occurring as a dependency of some
assertion in F' is the label of an assumption of F'. We let C range over
the sort Czt of FOL contexts. As stated in the beginning, informally,
we write

C = (lab, form, deps, just)

to describe a context with components as above.

Notice that, if the computation system has only finite data struc-
tures, 1.e. programs, arguments, environments, computations, ..., are
all finite data structures, then FOL contexts are finite data structures.
An example of such a computation system is the HGKM computation
system [fol-little-hgkm|.

7. References
[1] D. Prawitz. Natural Deduction: A Proof-theoretical Study.
Almquist and Wiksell, 1965.

[2] C. L. Talcott and R. W. Weyhrauch. Computation systems
with restartable computations, 1996. URL = http://www-
formal.stanford.edu/FOL/home.html.

[3] R. W. Weyhrauch and C. L. Talcott. FOL home page, 1995. URL
= http://www-formal.stanford.edu/FOL/home.html.

www.manaraa.com

