
www.manaraa.com

FOL Contexts { the Data StructuresRichard W. WeyhrauchIbuki Inc.rww@ibuki.comCarolyn TalcottStanford Universityclt@sail.stanford.eduCopyright c 1996 by R. Weyhrauch and C. TalcottPrologThis note describes the FOL context data structure. It is a refer-ence manual, rather than a primer. We make no attempt to motivateor justify the choices here.1. A birds-eye view of FOL ContextsWe start with a set of symbols, FOLsym, a set of labels Lab, as wellas numbers and the ability to form �nite lists of things. These areour basic building blocks. We let s range over FOLsym and lab rangeover Lab .1 We also assume we have a computation system (see [2])that provides us with programs and computations.Forms are the primeval syntactic structures. A form is eithera symbol or a list of forms. We let Form be the set of forms sogenerated, and let form range over Form.An FOL context is a data structure that contains a label, lab, alanguage, L, a simulation structure, S , and some facts, F . Informallywe write, C = hlab : L;S ;F ito describe such an FOL context. This note describes the data struc-tures (languages, simulation structures, facts) that are used to buildcontexts, and describes the basic operations for constructing and ma-nipulating FOL contexts. The computation system provides �nite datastructures from which we build simulation structures. The purpose1 By convention whenever we introduce a metavariable to range over some sort,then we also may use subscripted or superscripted variants range over that sort.Thus lab0 and lab0 will also range over Lab.Draft! 20 March 1997

www.manaraa.com

of simulation structures is to tell us how we can compute the value ofexpressions in the language of a context.2. LanguagesAn FOL language contains a �nite set of symbols each with an as-sociated syntactic type|SortSym, RelSym, FunSym, IndSym|whichtells us how it is used to form terms and formulas. We factor the de-scription of an FOL language into two parts: a similarity type andits corresponding symbol declarations. A similarity type speci�es thenumber of symbols of each syntactic type and the number of argu-ments (arity) of each relation and function symbol. The symbol dec-larations specify the actual symbols of the language. In the case ofsorts, the declaration consists of the sort symbol together with a (pos-sibly empty) list of symbols usable as variables ranging over that sort.2.1. Similarity TypesA similarity type is a data structure of the formT = simtypeMake(j; p; q; n)where(s) j = simtypeSorts (T) is a positive integer, the number of sortsymbols;(r) p = simtypeRels(T) is a list of positive integers, p = hp1; : : : ; pki,where the length, k, of p is the number of relation symbols, andpi is the arity of the i-th relation symbol;(f) q = simtypeFuns(T) is a list of positive integers, q = hq1; : : : ; qli,where the length, l, of q is the number of function symbols, andqi is the arity of the i-th function symbol; and(i) n = simtypeInds (T) is a natural number, the number of individ-ual constant symbols.We let the symbol T range over the sort Simtype of similarity types.In places where a similarity type is expected, we writeT = hj; p; q; nito describe a similarity type with components j, p, q, n as above.2

www.manaraa.com

2.2. First order languagesAn FOL language is a data structure of the formL = langMake(T ; svDecs ; symsr; symsf ; syms i)where(t) T = langSimtype(L) is a similarity type,(s) svDecs = langSortVarDecs(L), the sort and variable symbol dec-larations, is a non-empty list of non-empty lists of symbolssvDecs = hhs1; v1;1; : : : ; v1;m1i; : : : ; hsj ; vj;1; : : : ; vj;mj ii;where si is declared a sort symbol and vi;mi is declared a variablesymbol ranging over si for 1 � i � j.(r) symsr = langRelDecs(L), the relation symbol declarations, is alist of symbols symsr = hr1; : : : ; rki declaring each ri to be arelation symbol.(f) symsf = langFunDecs(L), the function symbol declarations, isa list of symbols symsf = hf1; : : : ; fli declaring each fi to be arelation symbol.(i) syms i = langIndDecs(L), the individual constant symbol decla-rations, is a list of symbols syms i = hc1; : : : ; cni declaring each cito be an individual constant symbol.and the lists of symbols are pairwise disjoint. We let L range over thesort Lang of FOL languages. We writeL = h T ;hhs1; v1;1; : : : ; v1;m1i; : : : ; hsj ; vj;1; : : : ; vj;mj ii;hr1; : : : ; rki;hf1; : : : ; fli;hc1; : : : ; cni ito describe a language, L, of similarity type T with symbol decla-rations as above. The sort symbol s1 is called the mostgeneral oruniversal sort symbol. Note that the above de�nition requires everycontext to have a universal sort. This sort plays a distinguished roleas will be explained in later sections.By the symbols of L we mean the setfs1; : : : ; sj ; v1;1; : : : vj;mj ; r1; : : : ; rk; f1; : : : ; fl; c1; : : : ; cng3

www.manaraa.com

Well-formed terms and formulae of L are subsets of FOL forms de�nedin the usual way from the individual variable and constant symbols,termIf (conditional term formation); the sentential constants, Trueand False; the sentential connectives, and (^), or (_), imp (�),iff (�), not (:), wffIf (conditional formula formation); and thequanti�ers, all (8), and exists (9) (see Prawitz [1]). We say thate is an expression of (the language) L, when e is either a term or aformula of L. A form form is called a formula if it has the shape ofa formula, that is if there is a language L such that form is a (well-formed) formula of L. We let Formula be the set of formulas, and letformula range over Formula.We have chosen to de�ne a language in terms of two lists|a similaritytype and symbol declarations|rather than as a set of symbols andan associated arity map. Since a similarity type also describes thestructure of a model, independent of the choice of symbols used todescribe terms and formulas, similarity types types provide a linkbetween the syntactic and semantic structure of FOL contexts. Forthe purpose of recognizing the set of well-formed terms and formulas,it is easy to map one form of language presentation to the other.3. Computation SystemsIn [2] we introduced the notion of a computation system as a certainkind of partial structure in order to give a clear understanding of whatwe mean by \program". A computation system has as its domain aset, CsysU , of computational entities (the computational universe).The basic sorts of a computation system include:Pgm the set of programs;Cmp the set of restartable computations;Env the set of environmentsThe rei�cation of computations and the notion of a restartable compu-tation (using a stepper semantics) is described in detail in [2]. Herewe explain just enough to allow us to make sense of the notion ofsimulation structure.A computation system has a relation run and the functions apply ,and call . run(cmp;u)means that if you start the computation, cmp the computation com-pletes and the result is u. We require that run behave like a function4

www.manaraa.com

with respect to its �rst argument, i.e. there is at most one value usuch that run(cmp;u). apply (P ; env ; cmps)produces a restartable computation that computes the result of ap-plying the program P to the list of arguments resulting from the listof computations cmps . call(P ; env ; args)is like apply, but expects as its third argument a list of argumentvalues, not a list of computations producing these values.In a computation system, we also have available some speci�cdata structures:yes and no representing the booleans True and False;mt-env, the empty environment;nc-pgm, a program that fails to complete its computation forany argument list; andnc-cmp, a restartable computation that is never done.Note that nc-pgm and nc-cmp are speci�c data structures and can betested against for equality.4. Simulation StructuresAn FOL simulation structure is a data structure of the formS = ssMake(T ; env ; reps ; satts ; ratts ; fatts; catts)where(t) T = ssSimtype(S) is a similarity type,(r) reps = ssReps (S) is a list of representation types (FOLsyms),(e) env = ssEnv (S) is an environment,(sa) satts = ssSortAtts(S) is a list, hsatt1; : : : ; satt ji, of sort attach-ments, where each sort attachment, satt i, is a (possibly empty)list of pairs, each consisting of a sort representation type and aprogram,� satt i = hhsrep i;x;PSi;x i 1 � x �msii� srep i;x 2 reps 5

www.manaraa.com

(ra) ratts = ssRelAtts(S) is a list, hratt1; : : : ; rattki, of relation at-tachments, where each attachment, ratti, is a (possibly empty)list of pairs, each consisting of a relation representation type anda program,� ratt i = hhrrep i;x;PRi;xi 1 � x � mrii� rrepi;x 2 repspi(fa) fatts = ssFunAtts(S) is a list, hfatt1; : : : ; fatt li, of function at-tachments, where each attachment, fatt i, is a (possibly empty)list of pairs, each consisting of a function representation type anda program,� fatt i = hhfrep i;x;PFi;xi 1 � x � mf ii� frep i;x 2 reps qi+1(ia) catts = ssIndAtts(S) is a list, hiatt1; : : : ; iattni, of individualconstant attachments, where each attachment, iatti, is either theempty list or a list with one element {an indconst representationtype paired with a computation,� iatt i = hhirep i;x; cmpi;xi 1 � x �mcii� irep i;x 2 reps , mci is 0 or 1where a given representation type (sort, relation, function or individ-ual) appears at most once as the �rst element of an element of anattachment list.We let S range over the sort Ss of FOL simulation structures. WewriteS = h hT ; reps ; env i;hsatt1; : : : ; satt ji;hratt1; : : : ; rattki;hfatt1; : : : ; fatt li;hiatt1 : : : ; iattni ito describe a simulation structure, S , of similarity type T , with envi-ronment, representations, and attachments as above.Even though representation types may seem to be one of themore bizarre and complex features of FOL contexts, we do not try tomotivate their use here. As mentioned earlier, the purpose of thisnote is to carefully describe the data structures we call FOL contexts.The motivation for representations will be discussed elsewhere.6

www.manaraa.com

5. Assertions and FactsThe facts of an FOL context are collections of assertions that are re-quired to satisfy certain well-formedness conditions. A assertion is adata structure of the formassert = assertMake(lab; formula ; deps ; just)where(1.) lab = assertLab(assert) is a label,(2.) formula = assertForm(assert) is an FOL formula,(3.) deps = assertDeps(assert) is a list of labels called dependencies,(4.) just = assertJust (assert) is a justi�cation.Justi�cations, Just, are data structures used to record additional in-formation about an assertion. Among other things, a justi�cationmight say why an assertion is asserted in a context, or what it mightbe used for and how it might be used in the process of reasoning. Weleave justi�cations unspeci�ed for the present, simply requiring thatthey be �nite data structures.We let assert range over the sort Assert of assertions. We writeassert = hlab; formula ; deps ; justito describe an assertion with components as above.If the formula of an assertion, assert , is a formula of the languageL, then we say assert is an assertion of L, and writeAssertfLg(assert).We let ListOf [Assert] be the the set of lists of assertions, and letas range over ListOf [Assert]. assertsLabs (as) is the set of labels ofassertions occurring in as , and assertsCons (assert ; as) adds assert tothe list as . assertsGet(as ; lab) is the �rst assertion in the list as withlabel lab. We write ListOf [Assert]fLg(as), if as is a list assertionsover L, i.e. if each element of as is a assertion over L.Assertions may have no dependencies|for example axioms andtautologies. If the label of an assertion, assert , appears in its depen-dency list and its label is the only dependency of that assertion, thenwe say that assert is an assumption and write Assume?(assert).7

www.manaraa.com

6. ContextsAn FOL context is a data structure of the formC = cxtMake(lab;L;S ;F)where(1.) lab = cxtLab(C) is a label,(2.) L = cxtLang(C) is a language,(3.) S = cxtSs(C) is a simulation structure,(4.) F = cxtFacts(C) is an assertion list over L (ListOf [Assert]fLg(F)).We further require that every label occurring as a dependency of someassertion in F is the label of an assumption of F . We let C range overthe sort Cxt of FOL contexts. As stated in the beginning, informally,we write C = hlab; form ; deps ; justito describe a context with components as above.Notice that, if the computation system has only �nite data struc-tures, i.e. programs, arguments, environments, computations, : : : , areall �nite data structures, then FOL contexts are �nite data structures.An example of such a computation system is the HGKM computationsystem [fol-little-hgkm].7. References[1] D. Prawitz. Natural Deduction: A Proof-theoretical Study.Almquist and Wiksell, 1965.[2] C. L. Talcott and R. W. Weyhrauch. Computation systemswith restartable computations, 1996. URL = http://www-formal.stanford.edu/FOL/home.html.[3] R. W. Weyhrauch and C. L. Talcott. FOL home page, 1995. URL= http://www-formal.stanford.edu/FOL/home.html.
8

